Copyright
Copyright © 2002 CAXperts GmbH. All Rights Reserved.
Including software, file formats, and audiovisual displays; may be used pursuant to applicable software licence agreement; contains confidential and proprietary information of CAXperts and/or third parties which is protected by copyright law, trade secret law, and international treaty, and may not be provided or otherwise made available without proper authorization.

Restricted Rights Legend
Rights reserved under the copyright laws of the Federal Republic of Germany.

Warranties and Liabilities
All warranties given by CAXperts about equipment or software are set forth in your purchase contract, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of such warranties. CAXperts believes the information in this publication is accurate as of its publication date.

The information and the software discussed in this document are subject to change without notice and are subject to applicable technical product descriptions. CAXperts is not responsible for any error that may appear in this document.

The software discussed in this document is furnished under a licence and may be used or copied only in accordance with the terms of this licence. THE USER OF THE SOFTWARE IS EXPECTED TO MAKE THE FINAL EVALUATION AS TO THE USEFULNESS OF THE SOFTWARE IN HIS OWN ENVIRONMENT.

Trademarks
CAXperts is a registered trademark of CAXperts GmbH. Intergraph, the Intergraph logo, SmartSketch, FrameWorks, SmartPlant, INtools, MARIAN, PDS, IGDS, RIS and IntelliShip are registered trademarks of Intergraph Corporation. IGDS file formats ©1987-1994 Intergraph Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. Bentley, the Bentley logo “B,” and MicroStation are registered trademarks of Bentley Systems, Inc. ISOGEN is a registered trademark of Alias Limited. Other brands and product names are trademarks of their respective owners.
Contents

1 Introduction .. 4
 1.1 General conventions ... 4
 Typefaces .. 4
 Symbols .. 4

2 Installation .. 6
 Uninstall ... 6
 Setup command line (for administrators) ... 6
 2.1 Licence ... 7
 2.2 Prerequisites .. 7

3 PlantReModeller ... 9
 3.1 Configuration file ... 10
 3.2 Extraction folder ... 10

4 Import piping data .. 12
 Piping specification mapping ... 12
 Piping specification extraction .. 12
 4.1 Import line topology ... 13
 4.2 Import parts ... 13
 End-feature parts .. 13
 Piping part mapping ... 15
 Piping port mapping ... 17
 4.3 Import supports ... 17

5 Import structural data .. 18

6 Import equipment from DGN files ... 19

7 Import DGN files not created by PDS ... 20

8 Log files ... 21

9 Other features ... 22
 9.1 Usage of a text file to check items in the treeview ... 22

10 Appendix (Graphical User Interface) ... 23
 10.1 Menu ... 23
 File .. 23
 Tools .. 23
 Help ... 23
 10.2 Status bar .. 24

11 Technical support ... 25
1 Introduction

PlantReModeller imports following PDS data into the SmartPlant 3D plant:

- Piping line topology
- Piping components
- Structural linear members

Note: PlantReModeller requires a SmartPlant 3D licence seat on a SmartPlant License Server.

1.1 General conventions

This document contains many visual cues to help you understand the meaning of certain words or phrases. The use of different fonts for different types of information allows you to scan the document for key concepts or commands. Symbols help abbreviate and identify commonly used words, phrases, or groups of related information.

Typefaces

Italic Indicates a system response, which is an explanation of what the software is doing. For example,

The text is placed in the viewing plane.

Bold Indicates a command name, parameter name, or dialog box title. Command paths are shown using an arrow between command names. For example,

Choose File → Open to load a new file.

Sans serif Indicates a system prompt or message, which requires an action be taken by the user. For example,

Select first segment of alignment.

Normal typewriter Indicates an actual file or directory name. For example,

The ASCII report is stored in the layout.rpt file.

Bold typewriter Indicates what you literally type in. For example,

Key in original.dat to load the ASCII file.

Symbols

This document uses the following symbols to identify special information:

Note – important supplemental information.
Map or path – shows you how to get to a specific command or form.

More information – indicates there is additional or related information.
2 Installation

Requirements:

- Supported operating systems:
 - Microsoft Windows XP SP3
 - Microsoft Windows Server 2003
 - Microsoft Windows Vista
 - Microsoft Windows 7
- Intergraph SmartPlant 3D 2009.1 or later
- Microsoft Excel 2003 or later

Administrator rights are required on each computer to install CAXperts PlantReModeler. “Run as” is not supported.

Uninstall

To uninstall the software, select Control panel from the start menu. Then on

- Windows 7: in large or small icon view, click Programs and features. If you’re using category view, under Programs, click Uninstall a program.
- Windows Vista: in classic view, double-click Programs and features. In control panel home view, under Programs, click Uninstall a program.
- Windows XP/2000: (Double) click the Add or remove programs icon.

Select the program you want to remove, and click Uninstall/Remove. Alternatively, right-click the program and select Uninstall.

Setup command line (for administrators)

The following command line options are supported by the installer:

\$/S:<optional ini file>>

Allow an install to be run in silent mode. As a result, no screens or dialogs will be shown.

This command line option also has an optional INI file that can be passed containing session variable values. For example:

"C:\output\setup.exe" \$/S:C:\setupvars.ini"

This will cause the session variables in the INI file to be used for the setup. The INI file should be in the format:

[SetupValues]

%AppFolder%=C:\Program Files\MyProduct
Installation

/U:<<XML config file>>
This command line option must be used when calling the uninstall program from the command line. This command also has an optional XML file that can be passed containing session variable values. For example:

"C:\Program Files\MyProduct\uninstall.exe" /U:C:\Program Files\MyProduct\irunin.xml"

2.1 Licence
PlantReModeller works with signed PD Schema files (i.e. PD schema files that are locked to a certain SmartPlant 3D plant name and might be restricted to certain areas or models), please contact CAXperts Sales to get your PD Schema files signed.

2.2 Prerequisites
PlantReModeller requires RIS dump files of the PD and MTO schemas from a PDS project. The RIS dump of a PD schema contains the information about the project structure (areas, models). The MTO schema dump includes the data about the graphics of the PDS model (coordinates, NDP, attributes, ...). To fill the MTO schema with the data use Intergraph Material Data Publisher.

Note: PlantReModeller supports RIS dump files in fixed and variable format. See the Intergraph PDS manual for details.

For the equipment task, a special PlantReModeller equipment symbol has to be installed according to the Smart 3D standard procedures for symbol registration and bulkload.

1. The file PRMEquipmentAsm.dll has to be registered (either using regsvr32 or the XML file procedure, depending on the way other symbols were registered). This file is located in the Symbols folder in the application folder, e.g. ..\CAXperts\PlantReModeller\Symbols.

2. The file 1_APP_PRMEquipment.xls has to be bulkloaded using Start → Intergraph SmartPlant 3D → Database Tools → Bulkload Reference Data:
The file 1_APP_PRMEquipment.xls is located in the Symbols folder in the application folder e.g. ...\CAXperts\PlantReModeller\Symbols.
3 **PlantReModeller**

Run the software and select a source PD schema RIS dump file. The PDS hierarchy (areas, models, lines) is read.

Select the pipelines and/or non-piping models to import. The output **SmartPlant 3D** plant will be chosen automatically (according to the information from the signed PD Schema). Finally, define an active permission group which is used to create the new **SmartPlant** objects.

Note: After selecting a PD dump file **PlantReModeller** looks for the RIS dump file of the MTO schema, which should be located in the same directory as the PD dump file and should be named `mto_PROJECTNAME.dmp`.

Note: **PlantReModeller** adds a new generic system **PlantReModeller** to the root of the workspace explorer. All imported PDS data is shown there.
To start the placement process, you can either use the **Run import** button () or the **Remodel step-by-step using topology** button (). These modes differ in the way they handle piping: Run import uses mapping to place lines and add components. If the PDS and SmartPlant 3D pipe specs and pipe spec mapping are not absolutely identical, this might cause errors in the remodelled plant. **Remodelling via topology** remapping works via topology and DGN file analysis, i.e. the piping DGN files have to be placed in the **Source DGN files folder**, the dummy symbols have to be registered and been bulkloaded to the catalogue. The components graphics will be very close to the PDS original, but everything is based on custom instruments and the graphics is fixed (non-parametric).

After completion **PlantReModeller** generates the Excel report.

3.1 Configuration file

All configuration settings are stored in an Excel file, located by default in `Config\Default.xls` in the application folder. The location of the Excel configuration file can be changed using the **Settings** menu.

The Excel configuration file consists of the following sheets:

- **PipingSpecMapping**
 Specification mapping between PDS and SmartPlant 3D piping specs
- **PipingPartMapping**
 Mapping between PDS commodity names and SmartPlant 3D parts/instruments
- **PipingIgnoreComponents**
 Contains PDS commodity names which are ignored upon import process
- **StructuralCrossSectionMapping**
 Mapping between PDS and SmartPlant 3D structural cross sections
- **StructuralMaterialMapping**
 Mapping between PDS and SmartPlant 3D structural material
- **PipingEquipPortMapping_2**
 Mapping between PDS and SmartPlant 3D port attributes

Each Excel sheet contains the attribute names followed by the data. The attribute name must be located in the first row irrespective of the column.

3.2 Extraction folder

The extracted data of the piping specification is stored under the selected folder in the **Settings** menu under **Extraction folder**. The location of the extraction folder path can be changed using the **Settings** menu.
4 Import piping data

PlantReModeller allows importing piping data from PDS. Along with line topology and common segment attributes the software places parts for the corresponding PDS components as defined on PipingPartMapping sheet.

Note: PlantReModeller overwrites previously imported piping data (SmartPlant 3D Pipelines).

Note: All SmartPlant 3D piping specifications and parts required to import piping data must be properly loaded and tested before the user starts the import process.

Piping specification mapping

The menu item Piping specification mapping… opens a window where the user can define piping specification mappings for all lines within the selected RIS dump file.

Note: Only SmartPlant 3D piping specifications allowed for the PlantReModeller piping system or the whole plant will be shown.

Note: The piping specifications mapping dialogue automatically shows the PDS specifications for all selected lines to confirm/change the mapping to the corresponding SmartPlant 3D specification.

Note: To get proper results map ANSI PDS to ANSI SmartPlant 3D piping specifications only (the same is also applicable to piping specifications according to DIN).

Piping specification extraction

After the definition of the piping specification mappings, PlantReModeller asks for an extraction of the selected piping specifications. At the moment the extraction is necessary for the automatic search of the option code for piping parts.
4.1 Import line topology

Using route pipe functionality PlantReModeller imports first the line topology by placing pipes, reducers and branches. Here only the default SmartPlant 3D parts are used (with default option code).

The following PipeRun attributes are retaken automatically from PDS:

- DesignMaxTemp
- DesignMaxPressure
- OperatingMaxTemp
- OperatingMaxPressure
- InsulationPurpose
- InsulationThick

4.2 Import parts

There are two important groups of parts during the import process:

- **End-feature parts**: The parts placed at the end of the line. After placement the total length of the line is increased by the length of the new part.
- **Straight-feature parts**: The parts placed in the middle of the line (at any straight feature). After placement, the total length of the line is unchanged.

End-feature parts

PlantReModeller routes the pipe over all PDS components first. This causes the end-feature parts defined on the PipingPartMapping sheet to be inserted with a shift and not on the real position. This happens because of the pipe in place, created as a place holder during the "import line topology" step. In order to properly recognize end-feature parts and to place them correctly, additional rules have to be defined on the PipingPartMapping sheet.
Any rule which begins (or ends) with the $ character defines an end-feature part rule. e.g. $6Q2C01 defines the flange at the begin (or at the end) of any line. Once recognised, PlantReModeller won’t place a pipe in place of this flange at the stage of pipe routing, so the end flange is inserted properly on the step of importing single parts.

Note: The end-feature part rule may contain more than one PDS component, e.g. a ball valve with blind flange.
Piping part mapping

Part mapping allows mapping single or multiple PDS components to the SmartPlant 3D part. All mapped parts will be placed in SmartPlant 3D in place of corresponding PDS components.

The default configuration (PipingPartMapping sheets) includes some common cases and is delivered with the software.

<table>
<thead>
<tr>
<th>PdsName</th>
<th>SmartPlant3DName</th>
<th>SmartPlant3DOptionCode</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6Q2C01</td>
<td>Gate Valve</td>
<td>autosearch</td>
<td>gate valve with blind flange</td>
</tr>
<tr>
<td>$6Q2C01</td>
<td>Ball Valve</td>
<td>autosearch</td>
<td>end ball valve</td>
</tr>
<tr>
<td>$6Q2C03</td>
<td>Globe Valve</td>
<td>autosearch</td>
<td>end globe valve</td>
</tr>
<tr>
<td>$6Q2C08</td>
<td>Blind Flange</td>
<td>autosearch</td>
<td>blind flange</td>
</tr>
<tr>
<td>$6Q2C01</td>
<td>FLANGE</td>
<td>autosearch</td>
<td>end flange</td>
</tr>
<tr>
<td>$6Q2C01</td>
<td>IND4</td>
<td>autosearch</td>
<td>end instrument</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inline Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6Q2C01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auto Routing Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6Q2C01</td>
</tr>
<tr>
<td>$6Q2C01</td>
</tr>
<tr>
<td>$6Q2C01</td>
</tr>
<tr>
<td>$6Q2C01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default for all other components</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 4BOX6</td>
</tr>
</tbody>
</table>
Some hints for mapping parts:

- The mapping rules are executed top to down
- The rule for end parts should be placed before any other rules, especially for straight-feature parts
- Wildcard "*" can be used to define a PDS commodity code
- For each rule PlantReModeller generates automatically the reverse rule (the order of PDS components: left → right, right → left)
- Any valid SmartPlant 3D short code or instrument number can be used
- Instead of autosearch for the SmartPlant3DOptionCode it is possible to use an fixed value

End-feature part mapping rules

e.g. pipeline ends with ball valve:

```
 n:1 | 6Q2C01|6Q1C06$ | Ball Valve | End Ball Valve
```

e.g. pipeline ends with flange and blind flange

```
 n:1 | 6Q2C01|6Q2C08$ | Blind Flange | Blind Flange
```

Straight-feature part mapping rules

e.g. a flanged PDS globe valve

```
 n:1 | 6Q2C01|6Q1C11|6Q2C01 | Globe Valve | Flanged Inline Globe Valve
```

e.g. a flanged PDS instrument

```
 n:1 | 6Q2C01|1D1|6Q2C01 | I2WAY4 | Flanged Inline Instrument
```
Skip rules

To achieve placement of any unmapped items, e.g. as a default standard piping speciality (e.g. 4BOX6) in SmartPlant 3D, all parts which were placed by auto-routing must be skipped in order to avoid replacing them by standard piping speciality:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6Q2C76</td>
<td>Skip E90LR (placed by auto-routing)</td>
</tr>
<tr>
<td>6Q2C75</td>
<td>Skip 90 Degree elbow (placed by auto-routing)</td>
</tr>
<tr>
<td>6Q2C56</td>
<td>Skip E45LR (placed by auto-routing)</td>
</tr>
<tr>
<td>6Q2C55</td>
<td>Skip 45 Degree elbow (placed by auto-routing)</td>
</tr>
<tr>
<td>6Q2C23</td>
<td>Skip REDC (placed by auto-routing)</td>
</tr>
<tr>
<td>6Q2C22</td>
<td>Skip T (placed by auto-routing)</td>
</tr>
<tr>
<td>6Q3C73</td>
<td>Skip WELDOLET (placed by auto-routing)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Default rule for not mapped components</th>
</tr>
</thead>
<tbody>
<tr>
<td>4BOX6</td>
<td></td>
</tr>
</tbody>
</table>

Piping port mapping

Port mapping allows mapping the PDS attributes EndPreparation, PressureRating, TableSuffix and ScheduleThickness to the SmartPlant 3D part and instrument ports. All mapped attributes will be placed in SmartPlant 3D in place of corresponding PDS attributes.

The mapping will also be used to determine the option code for SmartPlant 3D parts there for the corresponding piping specifications must be extracted.

<table>
<thead>
<tr>
<th>ASME / DIN</th>
<th>PDSEndPreparation</th>
<th>PDSPressureRating</th>
<th>PDSTableSuffix</th>
<th>PDSScheduleThickness</th>
<th>SP3DEndPreparation</th>
<th>SP3DPressureRating</th>
<th>SP3DEndStandard</th>
<th>SP3DScheduleThickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>125</td>
<td>5</td>
<td></td>
<td>40</td>
<td>11</td>
<td>150</td>
<td>5</td>
<td>1-40</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>5</td>
<td></td>
<td>60</td>
<td>11</td>
<td>150</td>
<td>5</td>
<td>1-80</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>5</td>
<td></td>
<td>80</td>
<td>11</td>
<td>150</td>
<td>5</td>
<td>5-160</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>5</td>
<td></td>
<td>140</td>
<td>11</td>
<td>150</td>
<td>5</td>
<td>5-570</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>5</td>
<td></td>
<td>150</td>
<td>11</td>
<td>150</td>
<td>5</td>
<td>5-XL</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>5</td>
<td></td>
<td>150</td>
<td>11</td>
<td>150</td>
<td>5</td>
<td>5-XXS</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>61</td>
<td></td>
<td>60</td>
<td>11</td>
<td>150</td>
<td>61</td>
<td>1-40</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>60</td>
<td></td>
<td>80</td>
<td>11</td>
<td>150</td>
<td>60</td>
<td>1-80</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>61</td>
<td></td>
<td>80</td>
<td>11</td>
<td>150</td>
<td>61</td>
<td>5-160</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>125</td>
<td></td>
<td>125</td>
<td>11</td>
<td>150</td>
<td>125</td>
<td>5-570</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>150</td>
<td></td>
<td>150</td>
<td>11</td>
<td>150</td>
<td>150</td>
<td>5-XL</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>150</td>
<td></td>
<td>150</td>
<td>11</td>
<td>150</td>
<td>150</td>
<td>5-XXS</td>
</tr>
</tbody>
</table>

4.3 Import supports

PlantReModeller imports all PDS logical and physical supports and places a SmartPlant 3D logical support automatically. The support number is taken from PDS.
5 Import structural data

PlantReModeller allows importing structural linear members from PDS. This requires proper cross sections and material mapping, which are defined on the StructuralCrossSectionMapping and StructuralMaterialMapping sheets in the Microsoft Excel configuration file.

- Note: PlantReModeller overwrites previously imported structural data (SmartPlant 3D unit system).
- Note: Load any required cross section bulkload file using the Intergraph Bulkload utility before starting the import.
6 Import equipment from DGN files

PlantReModeller uses dump files and DGN files to remodel equipment in **SmartPlant 3D**. Be sure that you have registered and bulkloaded the symbols that come with **PlantReModeller** according to the *Prerequisites* chapter.

If **PlantReModeller** cannot import the geometry of an equipment completely, the leftover geometry will be stored in a DGN file in the local TEMP directory (e.g. “C:\Temp\PlantReModeller\”) and can be referenced manually in SmartPlant 3D.
7 **Import DGN files not created by PDS**

PlantReModeller can be used to import DGN files that were not created using PDS: drag & drop the DGN files or folder on the “Non PDS” node of the *PlantReModeller* tree.

In *SmartPlant 3D* the non PDS data appears in the Workspace Explorer under PlantReModeller / Non-PDS items.

If *PlantReModeller* cannot import all the geometry the software creates a dgn file with the left over geometry in the local TEMP directory (e.g. “C:\Temp\PlantReModeller\”).

- **Note:** *PlantReModeller* adds a new generic system *Non-PDS items* to *PlantReModeller* of the workspace explorer. All imported non PDS data is shown there.
- **Note:** *PlantReModeller* overwrites previously imported non PDS data.
8 Log files

The software creates log files in the local TEMP directory (e.g. "C:\Temp\PlantReModeller\"). The user can also open these files by double-clicking on the PlantReModeller status bar:
9 Other features

9.1 Usage of a text file to check items in the treeview

Create a text file according to this example (one line per search string, wildcard character ‘*’ is allowed):

pipe01
pipe02
pipe03
equipment_*
structural01

Drag & drop the text file on the PlantReModeller tree. PlantReModeller will then check all items within the piping, equipment and structural sub-tree that are listed in the text file.
Appendix (Graphical User Interface)

10 Appendix (Graphical User Interface)

10.1 Menu

File

Exit

The menu item Exit closes the application.

Tools

Piping specification mappings...

The menu item Piping specification mappings... opens a window where the user can define piping specification mappings.

Help

Help

The menu item Help opens the PlantReModeller documentation (i.e. this PDF file).

Update licence

The menu item Update licence... brings up the licence update form. On how to install a licence key please refer to chapter 2.1 Licence.

About

The menu item About shows the About form, which contains information about this software product:
Click **OK** to close the form. The button **System info** brings up the Windows System Information:

![System Information](image)

10.2 Status bar

The status bar shows information about the current state of the software (e.g. progress bars). If you double click on it, the log file opens (see chapter 6)
11 Technical support

Need more help? Contact CAXperts support by email, online, or phone:

mailto:support@caxperts.com

http://www.caxperts.com/component/option,com_contact